ISOLATION OF MICROZELANICUM FROM THE PLANT OF CLAUSENA HEPTAPHYLLA (ROXB.) WIGHT & ARN

Zar Chi Myint¹, Ko Ko Myo², Hnin Yu Win³, Myint Myint Sein⁴

Abstract

The present research paper describes the first isolation of 7-methoxy-6-(1'-methyl-4'-oxo-3', 6'-dioxabicyclo[3.1.0]hexan-2'-yl)-2H-chromen-2-one (Microzelanicum, $C_{15}H_{12}O_6$) from the plant of *Clausena heptaphylla* (Roxb.) Wight & Arn which belongs to the family Rutaceae. The structure of isolated pure compound was confirmed by spectroscopic data measurements (¹H- and ¹³C-NMR, 2D NMR, and MS). The structure of isolated pure compound, Microzelanicum ($C_{15}H_{12}O_6$), is shown below.

7-methoxy-6-(1'-methyl-4'-oxo-3',6'-dioxabicyclo[3.1.0]hexan-2'-yl) -2*H*-chromen-2-one

Microzelanicum

Keywords: Isolation, Clausena heptaphylla, Rutaceae, Microzelanicum

Introduction

Clausena heptaphylla (Roxb.) Wight and Arn. (Bengali name: Panbilash, Karanphul, Pomkaphur and Myanmar name is Taw-Pyin-Taw-Thein) is a small bushy shrub and widely distributed throughout Bangladesh, India and other parts of south East Asia. *Clausena* species are known to be useful in the treatment of paralysis, ulcerated nose, headache, muscular pain and malarial fever (Begum *et al.*, 2011) and are also reputed as diuretic, astringent, insecticide, tonic and vermifuge. The leaves of the plants possess antimicrobial properties (Fakruddin *et al.*, 2011). Previous phytochemical investigations of *Clausena* species have been reported that led to the isolation of 7-Demethylmurralonginol isovalerate and Murralonginol (Lekphrom *et al.*, 2011), Lunamarins A and B (Sohrab *et al.*, 1979), Clausenolide-1-methyl ether (Begum *et al.*, 2011), Lunamarins A and B (Sohrab *et al.*, 1999), Lunamarin C (Sohrab *et al.*, 1993), Clausenaire. (Sohrab *et al.*, 2000), and **Microzelanicum** (1) which is the first report of its occurrence from this plant.

¹Assistant Lecturer, Department of Chemistry, Meiktila University

² Assistant Lecturer, Department of Chemistry, University of Mandalay

³ Associate Professor, Department of Chemistry, University of Mandalay

⁴ Professor and Head (Rtd.), Department of Chemistry, University of Mandalay

Materials and Methods

General Experimental Procedures

NMR spectra were measured on a Bruker Ascend TM (400 MHz) spectrometer. Mass spectra were measured on an Agilent liquid chromatography/mass spectrometry (LC/MS, Triple Quadrupol mass spectrometer). Column chromatography was carried out on silica gel (70-230) mesh. Analytical preparative thin layer chromatography was conducted on Kiesel gel 60 (F254, Merck). In thin layer chromatography, visualization was taken via UV lamp (Lambada-40, Perkin-Elmer Co, Japan) and iodine developing vapour. Crude and purified extracts were measured in Electric Balance. Common laboratory apparatus and column and thin layer chromatographic method were used for the isolation and purification of pure compounds. Commercial grade reagents and solvents were purchased from Chemico Co. Ltd., Yangon.

Sample Collection

The specimen of *Clausena heptaphylla* (Roxb.) Wight & Arn. was collected from Kalay Township, Sagaing Region, Myanmar and identified by Dr Thet Naing Oo, Pro-rector of Monywa University. The fresh stem barks of *C. heptaphylla* were chopped into small pieces and allowed to air dried at room temperature for about two weeks.

Extraction and Isolation

The air-dried sample of *C. heptaphylla* (1 kg) was percolated with methanol (2.5 L) for about one month. Then, the methanol crude extract was filtered and evaporated to concentrate at room temperature. The residue was extracted with ethyl acetate to get (13.2 g) of ethyl acetate crude extracts. Among them, the crude extract (4 g) was dissolved in ethyl acetate and 12 g of silica gel were added. The mixture was allowed to dryness under reduced pressure. The resulting crude powder extracts were subjected to silica gel column chromatographic separation by using stepwise gradient of n-hexane and ethyl acetate to give a pure compound ZCM-3 (Microzelanicum, 20.7 mg), which was isolated as pale-yellow crystals.

Results and Discussion

Structure Elucidation of Microzelanicum (ZCM-3)

Microzelanicum was isolated as pale-yellow crystals. The IR absorption band of the compound at 1727, 1562 and 1500 cm⁻¹ showed common features of a coumarin framework. Another IR absorption at 3061 cm⁻¹ was due to the presence of sp² hydrocarbons and 2972 and 2931 cm⁻¹ were due to the presence of sp³ hydrocarbons (methoxy and C-H stretching of methyl groups respectively).

Furthermore, the structural elucidation of pure compound ZCM-3 was done by applying ¹H NMR (400MHz), splitting patterns and coupling constant (*J* values) of some prominent protons, ¹³C NMR (100 MHz), DEPT, DQF-COSY, HMQC, HMBC and NOESY spectral data.

In DQF-COSY spectrum (Figure 1) shows two doublets at δ_H 6.32 ppm and δ_H 7.65 ppm, integrating 1 H of each and could be confirmed by splitting pattern and coupling constant of these alkenic protons (δ_H 6.32 ppm, doublet, J = 9.5 Hz, H-3 and δ_H 7.65 ppm, doublet, J = 9.5 Hz, H-3 which indicates that the two protons are oriented as *cis* position. Moreover, HMQC spectrum (Figure 2) shows ¹H-¹³C direct correlation of the two protons (δ_H 6.32 ppm, H-3) and (δ_H 7.65 ppm, H-4) with their respective carbons (δ_C 114.27 ppm, C-3

and δ_C 142.86 ppm, C-4). The observation of α ¹H-¹³C long range coupling of alkenic proton (δ_H 6.32 ppm, H-3) in the HMQC spectrum, with the sp² methine carbon (δ 142.86 ppm, C-4) and carbonyl carbon (δ 160.39 ppm, C-2), also shows β ¹H-¹³C correlation of alkenic proton (δ 7.65 ppm, H-4) with carbonyl carbon (δ 160.39 ppm, C-2) which leads to the following fragment~A.

In ¹H NMR spectrum (Figure 3), the occurrence of two singlet aromatic protons at $(\delta_H 7.37 \text{ ppm}, \text{H-5} \text{ and } \delta_H 6.87 \text{ppm}, \text{H-8})$ are positioned as para position, which produces the following tetra-substituted benzene ring. In HMQC spectrum (Figure 2) displays ¹H-¹³C direct correlation of the two aromatic protons ($\delta_H 7.37 \text{ ppm}, \text{H-5}$ and $\delta_H 6.87 \text{ ppm}, \text{H-8}$) with their respective carbons as shown below. In the HMBC spectrum, there was observed β ¹H-¹³C long range coupling of aromatic proton ($\delta_H 6.87 \text{ ppm}, \text{H-8}$) with the aromatic quaternary carbons ($\delta_C 112.38 \text{ ppm}, \text{C-10}$ and $\delta_C 120.22 \text{ ppm}, \text{C-6}$). Furthermore, in HMBC spectrum (Figure 4), the observation of β ¹H-¹³C long range coupling of aromatic sp² methine proton ($\delta_H 7.37 \text{ ppm}, \text{H-5}$) with the two aromatic quaternary carbons (δ 156.56 ppm, C-9 and δ 159.87 ppm, C-7) produces the following fragment ~ **B**.

The connection between fragment ~ **A** and **B** could be done by α ¹H-¹³C long range coupling of sp² methine proton (δ_H 7.65 ppm, C-4) with sp² quaternary carbon (δ_C 112.38 ppm, C-10). Moreover, the observation of β ¹H-¹³C long range coupling of sp² methine proton (δ_H 7.65 ppm, C-4) with carbonyl carbon, sp² methine carbon and sp² quaternary carbon (δ_C 160.39 ppm (C-2), δ_C 127.45 ppm, C-5 and δ_C 156.56 ppm, C-9) in HMBC spectrum. The presence of aromatic methoxy at C-7 (δ_C 159.87 ppm) was confirmed by ¹H NMR singlet single peak occurs at δ_C 3.95 ppm (OCH₃), ¹³C NMR signal at δ_C 56.46 ppm and supported by 3*J* correlation to C-7 (δ_C 159.87 ppm) which produced the following extended fragment ~ **C**.

Fragment ~ C

 $(400 \text{ MHz}) (\text{CDCl}_3)$

In the ¹HNMR spectrum(Figure 3), the down field chemical shift of sp³ methine proton (δ_H 5.56 ppm, singlet, 1 H, H-2') must be connected to oxygen and also shows ¹H-¹³C direct correlation with sp³ methine carbon (δ_C 77.20 ppm, C-2') in HMQC spectrum (Figure 2). Moreover, in HMQC spectrum, ¹H-¹³C direct correlation of down field chemical shift of sp³ methine proton (δ_H 4.03 ppm, singlet, 1 H, C-5') and sp³ methyl proton (δ_H 1.67 ppm, singlet, 3 H, H-1') are connected with their respective carbons (δ_C 63.52 ppm, C-5' and δ_C 11.26 ppm, H-7') generates the following fragments.

In the HMBC spectrum, the occurrence of α and β ¹H-¹³C long range coupling of sp³ methyl proton (δ_H 1.67 ppm, H-1') with sp³ quaternary carbon (δ_C 57.23 ppm, H-1') and sp³ methine carbon (δ_C 63.52 ppm, C-5'). Furthermore, in HMBC spectrum, sp³ methine proton (δ_H 4.03 ppm, H-5') has α and β ¹H-¹³C long range coupling of carbonyl carbon (δ_C 172.23 ppm, C-4') and sp³ methine carbon (δ_C 77.20 ppm, C-2'). The other substituent on aromatic ring at C-6 (δ_C 120.22 ppm) is made up of prenyl unit which cyclized to form γ -lactone moiety. Moreover, the attachment of these protons in the lactone ring is further supported by 2*J* and 3*J* cross peak correlation which reveals the following fragment ~ **D**.

The connection between fragment ~ **C** and **D** could be done by α ¹H-¹³C long range coupling of sp³ methine proton (δ_H 5.56 ppm, H-2') with sp² quaternary carbon (δ_C 120.22 ppm, C-6) and sp³ quaternary carbon (δ_C 57.23 ppm, C-1'). In addition, β ¹H-¹³C long range coupling of sp³ methine proton (δ_H 5.56 ppm, H-2') with sp³ methine carbon (δ_C 63.53 ppm, C-5'), sp² methine carbon (δ_C 127.45 ppm, C-5), sp² quaternary carbon (δ_C 159.87 ppm, C-7) and carbonyl carbon (δ_C 172.23 ppm, C-4') in HMBC spectrum produces the following partial fragment ~ **E**.

Fragment ~ E

In this stage, the partial molecular formula of the fragment ~ **E** could be calculated as $C_{15}H_{12}O_4$. In EI-MS spectrum showed the molecular ion peak and m/z is 289.0[M + H]^{+•}, 311.1 [M + Na]^{+•}, and 599.1 [2M + Na]^{+•}(which represents its molecular mass of this compound). Thus, the remaining molecular mass of this compound is 288-256 = 32. It must be two 'O' atoms. The remaining two 'O' atoms must be connected to downfield chemical shift of aromatic carbon (δ_C 156.56 ppm and δ_C 160.39 ppm) and sp³ carbons (δ_C 63.52 ppm and δ_C 57.23 ppm). Therefore, the molecular formula of this compound was determined as $C_{15}H_{12}O_6$ on the basis of EI-MS spectrum.

7-methoxy-6-(1'-methyl-4'-oxo-3',6'-dioxabicyclo[3.1.0]hexan-2'-yl)-2*H*-chromen-2-one Chemical Formula: C₁₅H₁₂O₆

No.	¹³ C NMR δ(ppm)	¹ H NMR (<i>J</i> in Hz)	DEPT
4′	172.23	-	С
2	160.39	-	С
7	159.87	-	С
9	156.56	-	С
4	142.86	7.65 (d, $J = 9.5$ Hz, 1H)	CH
5	127.45	7.37 (s, 1H)	CH
6	120.22	-	С
9	114.27	6.32 (d, J = 9.5 Hz, 1H)	CH
10	112.38	-	С
8	99.85	6.87 (s, 1H)	CH
2'	77.20	5.56 (s, 1H)	CH
5'	63.52	4.04 (s, 1H)	CH
1′	57.23	-	С
OCH ₃	56.46	3.95 (s, 3H)	CH_3
7'	11.26	1.67(s, 3H)	CH ₃

 Table 1
 ¹H
 NMR
 (400
 MHz),
 ¹³C
 NMR
 (100
 MHz)
 and
 DEPT
 Spectral
 Data
 of

 Microzelanicum (ZCM-3) in CDCl₃
 in CDCl₃
 in CDCl₃
 in CDCl₃
 in CDCl₃

Figure 5 ¹³C NMR Spectrum (100 MHz, CDCl₃)

Figure 9 FT-IR Spectrum

Conclusion

In this study, the first isolation of 7-methoxy-6-(1'-methyl-4'-oxo-3', 6'-dioxabicyclo [3.1.0] hexan-2'-yl)-2*H*-chromen-2-one (Microzelanicum, $C_{15}H_{12}O_6$) from the plant of *Clausena* heptaphylla (Roxb.) Wight & Arn was presented. Although the compound was identified as a known compound, no literature data had been reported for this compound. Therefore, further investigations such as antimicrobial, anti-inflammatory and cytotoxic properties on this compound will also be studied.

Acknowledgements

The authors thank Professor Dr Yang Zhixiang, Center of Ningxia Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China for NMR spectra and mass measurements. The authors thank Dr Ba Han, Rector of Meiktila University and Dr Ni Ni Aung, Head of Department of Chemistry, Meiktila University for their kind permission to submit this paper.

References

- Begum, R.M.A., Kaisar, M.S., Rahman, A.M., Chowdhury, S., Rahman. M.M., Hasan, C.M. and Rashid, M.A. (2011). "Clausenolide-1-methyl ether from *Clausena heptaphylla* W&A". *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, vol.10 (2), pp.136 – 138
- Bhattacharyya, P., Biswas, G.K., Barua, A.K., Saha, C., Rovt, I.B. and Chowdhury, B.K. (1993). "Clausenalene, A Carbazole Alkaloid from *Clausena heptaphylla*". *Phytochemistry*, vol.33 (1), pp.248-250
- Cassady, J.M., Ojima, N., Chang, C. and Mclaughlin, J.L. (1979). "An Investigation of the Antitumor Activity of *Micromelum integerrimum* (Rutaceae)". *Journal of Natural Products*, vol.42 (3), pp.274-278
- Chakraborty, A., Saha, C., Podder, G., Chowdhury, B.K. and Bhattacharyya, P. (1995). "Carbazole Alkaloid with Antimicrobial Activity from *Clausena heptaphylla*". *Phytochemistry*, vol.38 (3), pp.787-789
- Fakruddin, M., Mannan, K.S.B., Mazumdar, R.M. and Afroz, H. (2012). "Antibacterial, Antifungal and Antioxidant Activities of the Ethanol Extract of the Stem Bark of *Clausena heptaphylla*". BMC Complementary and Alternative Medicine, vol. 1, pp.232
- Lekphrom, R., Kanokmedhakul, S., Kukongviriyapan, V. and Kanokmedhakul, K. (2011). "C-7 Oxygenated Coumarins from the Fruits of *Micromelum minutum*". *Arch Pharm Res*, vol.34 (4), pp.527-531
- Sohrab, M.H., Hasan, C.M. and Rashid, M.A. (1999). "Lunamarins A And B: Two Novel Terpenoid Coumarins from *Clausena heptaphylla*". *Natural Product Letters*, vol.14 (1), pp.47-53
- Sohrab, M. H., Hasan, C.M. and Rashid, M.A. (2000). "Clausmarin-A from the Leaves of *Clausena heptaphylla*". *Biochemical Systematics and Ecology*, vol.28, pp.91-93